Elements of homometric 2-algebra and their representations

Authors

DOI:

https://doi.org/10.37293/sapientiae91.04

Keywords:

Homometric 2-Algebra, homometric vector 2-product, systematic dimensional contraction, dynamic break-even point.

Abstract

This paper presents a scientific proposal on a new algebra, the Homometric 2-Algebra, whose product of vectors is called homometric vector 2-product, which transforms two multiplicative vectors of a given vector space into an axial vector of this same vector space, essentially characterized as an axial vector simultaneously orthogonal to the two multiplicative vectors. This homometric vector 2-product fulfills other fundamental properties such as antisymmetry, Lagrange identity, and Jacobi identity is not valid, in general. Moreover, this homometric vector 2-product admits the Gibbs and Heaviside vector product as a particular case that occurs in three-dimensional real vector spaces, which allows us to state that the Homometric 2-Algebra is a natural generalization of the Gibbs and Heaviside algebra for n-dimensional spaces and for the body of complex numbers. Thus, this paper aims, in general, to analyze the scientific foundations of Homometric 2-Algebra, its properties, functionalities and some applications in financial management, in the context of homometric vector spaces. To this end, research of theoretical-exploratory typology was used, which employs the logical-deductive method for the conceptualization of Homometric 2-Algebra, relating it to other algebraic structures, while its main scientific foundations and some applications in the context of financial management are identified.

References

Fernandes, J. F. P. (2021). Análise custo-volume-resultado e Balanced Scorecard no apoio à gestão estratégica de gastos: estudo de caso numa empresa de produção de insufláveis. [Dissertação de Mestrado]. Bragança. APNOR.

Hamilton, W. R. (1899). Elements of Quaternions. LONGMANS.

Hoffman, K. & Kunze, R. (1971). Linear algebra. Prentice-Hall.

Janesch, O. R. & Taneja, I. J. (2011). Álgebra I. 2ª Edição. Universidade de Santa Catarina.

Mello, M. F. de; Cunha, L. A. & Silva, N. J. da. (2017). O cálculo do ponto de equilíbrio e margem de contribuição como importante instrumento de gestão para uma empresa do ramo metal mecânico. Joinvile: XXXVII Encontro Nacional de Engenharia de Produção.

Printer, C. C. (2010). A book of abstract algebra. Second Edition. McGraw-Hill.

Silva, C. C. (2002). Da força ao tensor: Evolução do conceito físico e da representação matemática do campo electromagnético. IFGW.

Zau, F. L. B. (2021). Contracção dimensional sistemática: uma proposta metodológica para o cálculo de equações e sistemas de M equações lineares com N incógnitas. Sapientiae, 7(1), 76-93. https://doi.org/10.37293/sapientiae71.06.

Published

2023-07-19

Issue

Section

Articles/Papers

How to Cite

Zau, F. L. B. (2023). Elements of homometric 2-algebra and their representations. SAPIENTIAE, 9(1), 31-44. https://doi.org/10.37293/sapientiae91.04