Elements of homometric 2-algebra and their representations
DOI:
https://doi.org/10.37293/sapientiae91.04Keywords:
Homometric 2-Algebra, homometric vector 2-product, systematic dimensional contraction, dynamic break-even point.Abstract
This paper presents a scientific proposal on a new algebra, the Homometric 2-Algebra, whose product of vectors is called homometric vector 2-product, which transforms two multiplicative vectors of a given vector space into an axial vector of this same vector space, essentially characterized as an axial vector simultaneously orthogonal to the two multiplicative vectors. This homometric vector 2-product fulfills other fundamental properties such as antisymmetry, Lagrange identity, and Jacobi identity is not valid, in general. Moreover, this homometric vector 2-product admits the Gibbs and Heaviside vector product as a particular case that occurs in three-dimensional real vector spaces, which allows us to state that the Homometric 2-Algebra is a natural generalization of the Gibbs and Heaviside algebra for n-dimensional spaces and for the body of complex numbers. Thus, this paper aims, in general, to analyze the scientific foundations of Homometric 2-Algebra, its properties, functionalities and some applications in financial management, in the context of homometric vector spaces. To this end, research of theoretical-exploratory typology was used, which employs the logical-deductive method for the conceptualization of Homometric 2-Algebra, relating it to other algebraic structures, while its main scientific foundations and some applications in the context of financial management are identified.References
Fernandes, J. F. P. (2021). Análise custo-volume-resultado e Balanced Scorecard no apoio à gestão estratégica de gastos: estudo de caso numa empresa de produção de insufláveis. [Dissertação de Mestrado]. Bragança. APNOR.
Hamilton, W. R. (1899). Elements of Quaternions. LONGMANS.
Hoffman, K. & Kunze, R. (1971). Linear algebra. Prentice-Hall.
Janesch, O. R. & Taneja, I. J. (2011). Álgebra I. 2ª Edição. Universidade de Santa Catarina.
Mello, M. F. de; Cunha, L. A. & Silva, N. J. da. (2017). O cálculo do ponto de equilíbrio e margem de contribuição como importante instrumento de gestão para uma empresa do ramo metal mecânico. Joinvile: XXXVII Encontro Nacional de Engenharia de Produção.
Printer, C. C. (2010). A book of abstract algebra. Second Edition. McGraw-Hill.
Silva, C. C. (2002). Da força ao tensor: Evolução do conceito físico e da representação matemática do campo electromagnético. IFGW.
Zau, F. L. B. (2021). Contracção dimensional sistemática: uma proposta metodológica para o cálculo de equações e sistemas de M equações lineares com N incógnitas. Sapientiae, 7(1), 76-93. https://doi.org/10.37293/sapientiae71.06.
Downloads
Published
Issue
Section
License
The content of the publications are of absolute responsibility of the authors and not of the Oscar Ribas University or the SAPIENTIAE Journal. The Journal allow the author(s) to hold the copyright of the papers.This journal is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.