Systematic dimensional contracting: A methodological proposal for the calculation of equations and systems of M linear equations with N unknowns.
DOI:
https://doi.org/10.37293/sapientiae71.06Keywords:
homogeneous systems, linear equations, systematic dimensional contraction.Abstract
Homogeneous linear systems integrate special properties that differentiate them from other linear systems and allow to simplify the search for solutions that, under certain conditions, promote general solutions of even heterogeneous systems and non-linear systems, hence their crucial importance in Mathematics, related sciences and in Engineering. From the Nine Chapters on the Mathematical Art of Ancient China to authors such as Seki Kowa, Leibniz, Cayley, Silvester, Bôcher, the resolutions of linear systems started to rely on matrix methods based on theoretical results such as the Gauss-Jordan elimination algorithm, Cramer's theorem, the Kronecker-Capelli theorem. Classic iterative methods such as Jacobi-Richardson, Gauss-Seidel, Cholesck factorization, the SOR method, conjugate gradient iterative methods, as well as graphical methods were also introduced. However, this article presents an innovative methodological alternative called systematic dimensional contraction, which is not based on matrices: it aims, among other dynamics, to systematically reduce the number of unknowns until the respective resolution is viable. In this view, the objective is to analyze the operability of this method of systematic dimensional contraction in the study of equations and linear systems, using homogeneous techniques. For this purpose, this article makes use of a theoretical-methodological research, of an explanatory typology, with bibliographic technical procedures and that uses the inductive-deductive method. Thus, the methodologic proposal for a systematic dimensional contraction method was constructed and applied to obtain original and exact solutions of homogeneous systems of linear equations, because solutions of this nature are a necessary condition for the construction of the homogeneous vector product and, in general, of the homogeneous theory of Vector Spaces.References
Anton, Howard e Rorres, Chris (2012). Álgebra linear com aplicações. Tradução de Claus Ivo Doering. Bookman. Brasil.
Cabral, Marco e Goldfeld, Paulo (2012). Curso de Álgebra Linear. Universidade Federal de Rio de Janeiro. Brasil.
Farias, Diego Marcon; Konzen, Pedro Henrique de Almeida; Souza, Rafael Rigão (2018). Álgebra Linear. Universidade Federal do Rio Grande do Sul. Brasil.
Gonçalves, Ricardo Jorge Castro (2018). Álgebra Linear. Edições Sílabo. Portugal.
Miranda, Daniel; Grisi, Rafael; Lodovici, Simué (2015). Geometria Analítica e Vectorial. Universidade Federal do ABC. Brasil.
Pinho, Domingos Pires Valente Sevivas (2010). Matrizes e aplicações no ensino secundário. Dissertação de Mestrado. Mestrado em Matemática/Educação. Universidade Portucalense Infante D. Henrique. Portugal.
Santana, Cláudia Ribeiro; Yartey, Joseph Nee Anyah (2008). Álgebra Linear. Universidade Estadual de Santa Cruz e Universidade Federal de Bahia. Brasil.
Santos, Reginaldo J. (2010). Introdução à Álgebra Linear. Universidade Federal de Minas Gerais. ICEx. Brasil.
Silva, Cibelle Celestino (2002). Da força ao tensor: evolução do conceito físico e da representação matemática do campo electromagnético. Tese de Doutoramento. Doutoramento em Ciências Físicas. Instituto de Física Gleb Wataghin da Universidade de Campinas. UNICAMP. Brasil.
Silva, Diego Adriano; Brito, Arnaldo Silva; Sousa, Valdirene Gomes de (2020). Equações Diafantinas Lineares: um estudo com estudantes do 1º ano do Ensino Médio. Revista Electrónica da Matemática. Volume 6, No. 2. Brasil (Pp. 16).
Steinbruch, Alfredo; Winterle, Paulo (1995). Álgebra Linear. Pearson. Brasil.
Downloads
Published
Issue
Section
License
The content of the publications are of absolute responsibility of the authors and not of the Oscar Ribas University or the SAPIENTIAE Journal. The Journal allow the author(s) to hold the copyright of the papers.This journal is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.